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Monte Carlo multiple-scattering simulation and data correction
in small-angle static light scattering

Luca Cipelletti*
Dipartimento di Fisica and Istituto Nazionale per la Fisica della Materia, Universita` di Milano, Via Celoria 16, 20133 Milano, Italy

~Received 6 December 1996!

Monte Carlo methods usually employed forg- and x-ray problems have recently been utilized for simulating
multiple Rayleigh light scattering to all orders. Here a technique is discussed to separate the two-dimensional
problem of generating the polar and azimuthal scattering angles into two independent one-dimensional sam-
plings, thus increasing the computational efficiency. Although the method has quite a general applicability, this
paper is focused on small-angle light-scattering simulations, and an artifice is introduced which reduces the
inherent poor efficiency of the polar angle sampling in conjunction with differential scattering cross sections
that are sharply peaked in the forward direction. As a test, the technique was used to correct two sets of
experimental data affected by multiple scattering. Microporous membrane filters under quasi-index-matching
conditions were investigated, and two stacks of different thickness were used. While the raw data are of course
appreciably different for different sample thicknesses, the corrected scattered intensity distributions are the
same, thus providing evidence of the method effectiveness in retrieving the single-scattered intensity distribu-
tions. @S1063-651X~97!09806-1#

PACS number~s!: 02.70.Lq, 42.25.Fx, 61.43.Gt, 61.43.Hv
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I. INTRODUCTION

Multiple scattering is a quite general physical process t
inevitably occurs when a wave propagates in a strongly s
tering medium, and it severely distorts the singly scatte
intensity angular distribution. Since single-scattering p
cesses are the only ones which can be easily interprete
data correction procedure is highly desirable to exploit lig
scattering fully.

Data correction is usually based on a Monte Carlo sim
lation of the propagation of a large number of photons in
sample. This approach has been used since the 1970
study the effect of multiple Compton and Rayleigh x- a
g-ray scattering@1–5#. More recently, Bailey and Canne
applied a similar technique to calculate multiple scattering
static light-scattering experiments@6#, overcoming simula-
tion difficulties due to the imaging geometry that is oft
used in light scattering setups.

Data correction for the multiple scattering is usually a
complished by iteratively running the simulation progra
@1,3,6#. One starts with a reasonable guess of the singly s
tered intensity to obtain the simulated total~single plus mul-
tiple! scattered intensity. The initial estimate is then refin
by comparing the result of the simulation with the expe
mental data, and a corrected version is used as an input
second run. The entire process is repeated until the simul
scattered intensity converges to the experimental data. It
be noticed that ana priori knowledge of the functional form
of the single-scattering distribution is of great help in t
correction procedure, even if it is not strictly necessary.

The most difficult task in a Monte Carlo simulation is th
two-dimensional problem of generating the polar and a
muthal scattering angles according to the appropriate p

*Electronic address: cipelletti@mi.infn.it
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ability density function~PDF!. It is required that the sam
pling algorithm should be fast, to make the simulation tim
reasonable, and also flexible, so that various differential s
tering cross sections may be simulated. Bailey and Can
@6# proposed a quite general method, which consists of
binning of the whole solid angle in a way such that t
scattering probability per bin is the same. At each scatter
a new propagation direction is chosen at random among
the bins. Although their method proved to be highly efficie
in various scattering geometries, it is unfortunately diffic
to apply in the case of very low-angle scattering experim
simulations. In fact, to avoid any quantization distortions it
necessary that the typical bin extension be much smaller
the intensity angular distribution scale of variation, which
usually very small for low-angle experiments. Since even
low-angle simulations the binning of the entire solid angle
needed, it follows that an exceedingly large number of b
would be required to achieve the desired angular resolut
Recently, there has been a growing interest in the extrem
low-angle scattering machines, which can cover now ang
as low as 0.01°@7#. Such machines are designed to inves
gate scatterers larger than those studied with conventi
setups. Large turbidities are easily encountered, and a
correction procedure which efficiently tackles the difficulti
posed by low-angle scattering simulations is theref
needed.

The main purpose of this paper is to present a Mo
Carlo simulation procedure based on the separation of
two-dimensional angular sampling into two one-dimensio
PDF samplings. Since a one-dimensional sampling algori
is much faster than a two-dimensional one, this method
sults in a fast simulation of photon propagation for any is
tropic scattering system, where the scattering depends
on the magnitude of the scattering wave vector. Moreov
the technique may be also applied tog- and x-ray scattering
and to any scattering geometry, and it is particularly w
suited for small-angle light-scattering experiment simu
7733 © 1997 The American Physical Society
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7734 55LUCA CIPELLETTI
tions. For these cases, the polar angle sampling algor
efficiency is usually limited by the sharply peaked shape
the polar PDF. A simple artifice will be described, whic
allows a much more efficient sampling, increasing the sim
lation speed by a factor as large as 5.

An application to the correction of scattering data fro
microporous membrane filters permeated by a quasi-ind
matching solvent will also be presented. It is to be poin
out that, for this system, the single-scattered intensity dis
bution functional form is not knowna priori, thus making
the correction procedure test a particularly severe one.
only does the data correction turn out to be self-consis
since the process converges, but it also yields the same r
for samples of different thickness—and therefore differ
amount of multiple scattering—thus providing a good test
the effectiveness of the method.

The paper is organized as follows: Sec. II briefly d
scribes a typical small-angle light-scattering experimen
setup. The Monte Carlo simulation is presented in Sec.
particular emphasis being given to the angular samp
technique. Finally, Sec. IV is devoted to an application of
multiple-scattering correction procedure to scattering d
from two samples~microporous membrane filters! of the
same kind but with different thickness.

II. SMALL-ANGLE EXPERIMENTAL SETUP

In this section a typical small-angle static light-scatteri
apparatus will be briefly described, and I will focus on tho
details that are more important in view of the Monte Ca
simulation. As a characteristic example of the optical
rangement, I will refer to the experimental setup describ
by Carpinetiet al. @8#, which was also used to take the sca
tering data presented in Sec. IV.

In the Carpinetiet al. setup, a collimated laser beam fal
onto a cell, and the transmitted beam, together with the s
tered light, is collected by a lensL. The sensor is placed in
the focal plane ofL, and it consists of 31 solid state elemen
shaped as a quarter of annulus. On center a tiny hole all
the transmitted beam to pass clear of the sensing elem
and to be detected by a photodiode placed behind the se
In this way, the sample transmissionT may be measured b
dividing the transmitted beam power in the presence of
sample by that with the cell filled with the solvent alone. It
to be pointed out that multiple scattering does not affect
measuredT value, since the transmission is determined fro
the unscattered~transmitted! beam power@9#. The sample
turbidity t may be calculated fromt52zcell

21lnT, where
zcell is the cell optical path. Note thatl5t21 is the photon
mean free path.

With this optical scheme, scattered photons are collec
by sensor elements at different radii according to the po
exit angleu ~scattering angle!. The apparatus thus allows th
collection of scattered light at 31 angles, ranging from 0
to 13.5°, and corresponding to almost a two-decade rang
wave vectorq54pnsl

21sin(u/2), wherens is the sample
refractive index andl the vacuum wavelength. It is to b
noted that the setup collects all the photons scattered f
the sample, and therefore it has no rejection scheme ag
multiple scattering. On the other hand, the advantage of s
an optical scheme is that the overall solid angle subtende
m
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the sensor is a substantial fraction of the one in which m
of the incident light is typically scattered, thus resulting in
efficient scattered light detection. The scattering experim
itself may be simulated in a very effective way. In fact, it
very unlikely that a photon, which has been propaga
through the sample, exits the cell along a direction such
it is not collected by the simulated sensor. Therefore, onl
negligible number of photons are to be rejected after tim
consuming propagation through the cell.

III. MONTE CARLO SIMULATION

A. General scheme

We assume that the incident beam propagates along
z axis of the laboratory frame, and is linearly polarized in t
x-axis direction~vertical direction!. As will be seen in the
following, it is also convenient to introduce a photon fram
(xph,yph,zph), where thezph axis corresponds to the photo
propagation direction and thexph axis is parallel to the pho-
ton polarization~see Fig. 1!. For unscattered photons, th
zph andz axes coincide, while thexph andyph axes are par-
allel to thex andy axes, respectively. The beam is assum
to have a Gaussian profile with a beam radiusw, so that the
radial intensity distribution at the entrance cell wall isI (r )
5I 0exp(22r2/w2).

The general scheme of the Monte Carlo simulation
similar to that described in Refs.@1,6#. The path of a large
number of photons is tracked through the cell by repeati
for each photon, the following steps:

~1! Photon position at the cell entrance. The polar coor-
dinates (r ,f) in the entrancex2y plane are calculated
Since the incoming beam profile is Gaussian, the probab
that the radial coordinate at the cell entrance lies betweer
and r1dr and the angular coordinate lies betweenf and
f1df is proportional to exp(22r2/w2)rdr df. Accordingly,
first f is chosen at random in~0,2p!, thenr is computed by
sampling the PDF (4r /w2)exp(22r2/w2). This can be easily
done by means of the inverse transform method@10#, by
choosingr5(w/A2)A2 ln(12j) @here and in the followingj
indicates a random number uniformly distributed in~0,1!#.
Finally, polar coordinates are transformed into Cartesian
ordinates. Ifr is so large that the calculated photon positi
lies out of the entrance cell wall, bothr andf are rejected
and the sampling is repeated. Note that step~1! may be
skipped if the beam lateral extension can be neglected, i.e
the difference between the width of the scattering cell a
w is much larger than the photon mean free path.

~2! First scattering event. In order to save computing
time, only scattered photons are tracked through the cell;
is obtained by forcing the first scattering event to happ

FIG. 1. The laboratory frame (x,y,z) and the photon frame
(xph,yph,zph), after scattering has occurred at point A.
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55 7735MONTE CARLO MULTIPLE-SCATTERING SIMULATION . . .
within the cell. The pathdfirst before the first scattering even
is therefore calculated by sampling the exponential P
t21exp(2tz) only for 0<z<zcell . This is obtained by
choosingdfirst52t21ln@12j(12T)#.

~3! Scattering direction. The probabilitydP(u,w), that a
photon is scattered within the solid angledV in the direction
defined by the polar angleu, the scattering angle, and th
azimuthal anglew ~with respect to the photon frame; see F
2! is dP(u,w)}(ds/dV)dV, whereds/dV is the single-
scattering differential cross section. Accordingly, the scat
ing direction is calculated by sampling the bivariate angu
PDF (dP/du dw)(u,w). Finally, the scattering direction i
transformed back to the laboratory frame. Details on the
gular sampling procedure will be given in Sec. III B.

~4! Distance before the next scattering event. The photon
is propagated along the direction calculated at point~3! until
it is scattered once more. The distanced traveled before the
next scattering event is sampled from the exponential P
t21exp(2tz), so thatd52t21ln(12j). The distancedcell
from the last scattering event to the cell wall along the pro
gation direction calculated at point~3! is also computed.

Points~3! and~4! are repeated until photon exits from th
cell, i.e., until the distance to the next scattering as calcula
at point~4! would be greater than the distance to the cell w
(d.dcell).

~5! Photon counting. In the optical geometry of a typica
small-angle light-scattering~SALS! instrument, each detec
tor element corresponds to a different photon exit angu
range. When a photon exits from the cell, an index varia
associated with the proper sensor element is updated, in
der to accumulate the number of photons detected by eac
the 31 channels.

The number of launched photons must be large enoug
achieve a good statistics for all detector channels. At the
of the run, the number of recorded counts is normalized
order to obtain the simulated total scattered intensityI t(qi)
( i51,2, . . .,31). Foreach channel, the normalization fact
accounts for the solid angle subtended by the related dete
element and for the fact that photons are detected even o
the scattering plane@the (y,z) plane in the laboratory frame#.
It is to be pointed out thatI t(qi) depends on the total numbe
of tracked photons. In order to compareI t(qi) with the ex-
perimentally measured scattered intensityI expt(qi), the simu-
lation data are therefore multiplied by a factorM chosen in
such a way that the total simulated and measured scatt
power are the same. This is done by takingM
5@* dVI expt(q)sin

2c#/@* dVIt(q)sin
2c#, where I expt(q) and

I t(q) are fits of the measured and simulated data, resp
tively, andc is the angle between the incident polarizati
vector and the scattered propagation vector~see Fig. 2!.
Track is also kept of the number of scattering events wh
each photon undergoes, so that the contribution of sing
double-, and higher-order scattering to the overall scatte
intensity may be monitored.

B. Angular sampling

The angular PDF to be sampled is (dP/du dw)(u,w)
5N/pI „q(u)…sinusin2c[S(u,w), whereI is the singly scat-
tered light intensity distribution andN/p is a normalizing
factor, so that*0

2pdw*0
pdu S(u,w)51 ~see Fig. 2 for a
F

.

r-
r

n-

F

-

d
ll

r
e
or-
of

to
d
n

tor
of

ed

c-

h
-,
d

sketch of theu, w, andc angles!. It is to be emphasized tha
S is a function of the two random variablesu andw, which
are not separable, due to the dipole factor sin2c. In fact,
sin2c512cos2c512sin2u cos2w and S cannot be factored
in au-dependent term times aw-dependent term, as would b
required foru and w to be random independent variable
@10#. In order to design a fast and flexible algorithm f
samplingS, it is, however, desirable to sample the angu
variablesu andw separately. The task is then split into th
easier and faster independent sampling of a PDF forw—the
same for every scattering system—and of a PDF foru, which
contains information on the specific scattering syst
through I (q). To do that, one takes advantage of the trig
nometric identities sin2c512cos2c512sin2u cos2w5sin2w
1cos2w cos2u to rewrite the angular PDF in the form

S~u,w!5b1g1~u,w!1b2g2~u,w!, ~1!

where

b15E
0

p

du NI„q~u!…sinu, ~2a!

g1~u,w!5
N

b1
I „q~u!…sinu

sin2w

p
, ~2b!

b25E
0

p

du NI„q~u!…sinu cos2u, ~3a!

g2~u,w!5
N

b2
I „q~u!…sinu cos2u

cos2 w

p
. ~3b!

As bothg1 andg2 are positive, andb11b251, the compo-
sition method@10# may be applied to sampleS. Accordingly,
g1 is sampled with probabilityb1 and g2 with probability
b2 ; that is, one generatesj and sampleg1 if j,b1 , and
g2 otherwise. Moreover, bothg1 andg2 are the products of a
u-dependent factor and aw-dependent factor. Therefore, th
two angular variables are independent random variables@10#,
and the most convenient sampling method may be separa
applied to each of them.

Let me first consider the rather straightforward sampl
of thew-dependent terms in Eqs.~2b! and~3b!, focusing my
attention only on the sin2w/p[F(w) factor in Eq.~2b!, since

FIG. 2. Relevant angles in the scattering, with respect to
photon frame:u is the ~polar! scattering angle,w the azimuthal
scattering angle, andc is the angle between incoming photon p
larization and scattered photon propagation directionksc.
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7736 55LUCA CIPELLETTI
the sampling of the analogousw dependent factor in Eq.~3b!
may be simply obtained from the sampling ofF~w!. In fact,
one notices that ifw is a random angle in~0,2p! with PDF
F~w!, then w85@~w1p/2!mod2p# is a random angle in
~0,2p! with PDF cos2w/p ~a mod b indicates the remainde
of the divisiona/b!. SinceF~w! is periodic with periodp, to
sample it one generatesw fromF~w! for 0<w,p and addsp
to the result, with probability12. This can be done quite effi
ciently by means of a combination of the inverse transfo
and acceptance-rejection methods@10#. Using sinw/p as an
upper limiting function forF~w!, one first takesw5arccos~1
22j! ~the inverse transform method!, and then acceptsw
with probability sin2w/sinw ~acceptance-rejection method!.

I turn now to a discussion of the sampling of th
u-dependent factors in Eqs.~2b! and ~3b!, which depend on
the particular scattering system through the single-scatte
intensityI (q). Accordingly, the sampling algorithm must b
flexibly designed, since different functional forms may
used. Either the numerical inverse transform method@11# or
the acceptance-rejection method are suitable. The for
consists in numerically dividing~0,p! into a large number of
tiny intervals, such that the probability of the scattering an
to lie in each interval is the same. Prior to the simulation r
a reference table is built up, containing the center of all
tervals, and it is stored in the computer memory. At ea
scattering event,u is chosen at random among the ang
listed in the reference table. This scheme has the advan
of allowing a fast sampling of theu PDF, once the referenc
table has been built. However, it suffers from the fact t
building and storing the reference table is time and mem
consuming, especially for very low-angle light-scatteri
simulations, where a large number of tiny intervals are
quired. In fact, to avoid distortions due to the quantization
the scattering angles, the average interval width has to
much smaller than both the typical scale of variation
I (q) and the sensor element angular spacing. In contrast
acceptance-rejection algorithm does not need any prior

FIG. 3. A typicalQ~u! for small-angle light scattering~see text
for more details!. Note the sharp peak in the very low-angle regio
zoomed in the inset. The dashed line is the upper limiting funct
y5Qmax used in the acceptance-rejection algorithm for the sa
pling.
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erence table building, and it generates a continuous distr
tion of scattering angles, thus avoiding any quantization
fects. However, the generation ofu at each scattering event i
slower than in the previous case. I implemented both al
rithms and, for a typical simulation run where 106 photons
are launched, the overall computing time is quite simil
Since the acceptance-rejection method is more easy to
gram, I will describe it, referring for simplicity only tog1 : a
similar procedure is needed for samplingg2 .

Let Q(u)5N1I „q(u)…sinu be theu-dependent factor of
g1(u,w), normalized so that*0

pdu Q(u)51, and letQmax

be the maximum ofQ~u! in ~0,p!. The acceptance-rejectio
algorithm is implemented with y(u)5const5Qmax,
0<u<p, as an upper limiting function forQ~u!. At each
scattering event the scattering angle is therefore chose
random in~0,p!, by takingu5jp. Finally, u is accepted with
probability Q(u)/Qmax. As is known, the efficiency of the
algorithm—i.e., the probabilityPu of u to be accepted once i
has been generated—is given by the ratio of the area u
Q~u! to the area undery(u) ~see Fig. 3!:

P05

E
0

p

du Q~u!

E
0

p

du y~u!

5
1

pQmax
. ~4!

A typicalQ~u! for SALS is shown in Fig. 3 together with th
correspondingy(u): the presence of a very sharp peak ne
u50 ~see the inset! is due to the sinu factor combined with
the fact that most of the light is scattered at very low ang
@12#.

It is clear that a very low-Pu value corresponds to such
shape, thus making the acception-rejection algorithm a ra
slow one. Consequently, one would desire to generate
scattering angle by sampling a much less peaked PDF.
can be accomplished by the following artifice: instead
directly samplingQ~u!, one choosesu5un, whereu is a
random variable with~properly normalized! PDF U (n)(u)
5nQ(un)un21, 0<u<An p @13#, and U (n) is sampled by
means of the acceptance-rejection method as descr
above. Fig. 4 showsU (n)(u) for variousn for the sameQ~u!

,
n
-

FIG. 4. Probability density functionU (n)(u) and related upper
limiting function for variousn ~see the text for the definition!. The
plotted functions correspond to the case shown in Fig. 3.
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55 7737MONTE CARLO MULTIPLE-SCATTERING SIMULATION . . .
as in Fig. 3. The correspondent upper limiting functions
also shown. Note that all curves are much less peaked,
that the areas under the upper limiting functions are d
nitely smaller than in the previous case, thus resulting i
greater computational efficiency, as defined analogousl
Eq. ~4!. For the case shown in Figs. 3 and 4, the accepta
is maximized forn54, Pu being 0.14, a much larger valu
compared withPu50.02, which holds for the direct sam
pling of Q~u!. By using this artifice, the overall simulatio
time is typically reduced by a factor as large as 5. Finally
is to be pointed out that this method proves to be useful a
if the numerical inverse transform technique is chosen
sampleQ~u!, since it drastically reduces the time required
build up the angular reference table.

C. Experimental data correction procedure

The Monte Carlo simulation described in the previo
sections may be applied to the correction of experime
scattering data, as I will now explain. An iterative scheme
used@1,3,6# to improve an initial guessI s

(0) of I s , the un-
known single-scattering distribution. A function obtained
fitting I s

(0) is input to the Monte Carlo code to obtain th
first-order simulated total scattered intensityI t

(1) , where the
superscript refers to the number of iterations.I t

(1) is com-
pared with the experimental scattered intensityI t

expt to calcu-
late a more refined guess of the single-scattered inten
which in turn may be fitted and used as the input to
second iteration, and so forth. Aftern iterations, the correc-
tion of the single scattering guess is done by taking

I s
~n!5I s

~n21!
I t
expt

I t
~n! . ~5!

The iterative procedure is carried on until the simulated to
scattered intensity agrees with the experimental scattere
tensity within a fixed error, typically a few percent. No
from Eq. ~5! that, as the simulated scattered intensity a
proaches the experimental data, the single-scattering g
calculated at successive runs changes only slightly, eve
ally converging to the single-scattering intensityI s .

An important point in applying the data correction sche
to small-angle scattering experiments is that the data are
ally available only in a limited angular range, while th
simulation requires a guess of the single scattering over
whole range of wave vectors. In practice, however, data c
rection turns out to be feasible, provided that most of
scattered lightI t

expt falls within the angular range spanned b
the sensor, and that one can extrapolate in a sensible wa
high-q behavior from the available data.

IV. APPLICATION

The multiple-scattering data correction procedure
been tested by applying it to the scattered intensity distri
tions from two samples of the same kind, but with differe
thicknesses. If multiple scattering were not present,
would expect the scattered intensity distributions of the t
samples to be simply proportional. Of course, multiple sc
tering will cause the intensity distributions to be differen
By contrast, as it will be shown in the following, the co
rected intensity distributions~i.e., the reconstructed single
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scattering distributions! are proportional within the experi
mental errors, thus providing evidence of the effectivenes
the correction process.

The samples are microporous membrane filters~Sartorius
SM 123 03! made of acetate of cellulose and permeated b
quasi-index-matching solvent,p-cymene@14#. These mem-
branes are highly porous, the pore boundary having fra
morphology, and their spatial structure exhibits a quasip
odicity over a typical length of approximately 10mm. Due to
these features, their scattered intensity distribution is pea
at a very low wave vector, and it steeply decays at largeq
following a power law. The ‘‘thin’’ sample, which will be
labeled as sample A, is a single membrane, while sampl
the ‘‘thick’’ one, is made up by a stack of five membrane
All the membranes were measured to have equal thickn
~14065 mm! and the scattered intensity distribution of ea
of them was checked to be the same within the experime
errors.

Figure 5 shows the experimental scattered intensity dis
butionsIA andIB for samples A and B. The measured tran
mission for the two samples areTA50.68, corresponding to
a photon mean free pathl5363613 mm, and TB50.15,
corresponding tol5369613mm. It should be noted that the
l values calculated for the two samples from the transmiss
and thickness data are in good agreement. The photon m
free path is definitely larger than the thickness of sample
~140mm!, and approximately half the thickness of sample
~700mm!. Accordingly, one expects multiple-scattering co
tributions to be much more relevant for sample B than
sample A. The presence of multiple scattering to an ext
which is different for the two samples is confirmed by t
fact that the shape ofIA and IB in a log-log plot is not the
same~see Fig. 5!.

The experimental data of both samples were corrected
multiple scattering, as explained in Sec. III. The sing
scattering cross-section functional form being unknown,
data were fitted with a quite general function, namely,
ratio of two polynomials, the numerator and denomina
degree being 3 and 7, respectively. This functional fo

FIG. 5. Experimental scattered intensity distribution for tw
samples of the same material~acetate of cellulose microporou
membrane filters! but with different thickness. Open triangles ref
to sample A, open circles to sample B, five times thicker th
sample A. Curves are labeled by the sample transmission valu
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proved to fit accurately both the experimental scattering d
and the estimated single scattering profile calculated at
end of each iteration. The extrapolation of the fitting functi
out of the experimentally accessibleq range provides a
physically reasonable behavior of the scattered intensity
following the same steep power-law decay observed in
fitting range for the larger wave vectors. The choice o
physically reasonable scattering profile was also eased by
fact that the membrane filters scatter substantially o
within a narrow lobe in the forward direction. In fact, b
integrating the experimental data fitting function, one c
estimate that more than 90% of the light scattered by
sample actually falls in theq range covered by the instru
ment sensor.

Typically 2–4 iterations were necessary for the correct
process to converge. In each computer run 106 scattered
photons were tracked through the sample, the resulting
tistical fluctuation for each detector sensing element be
less than the correspondent experimental error. The com
ing time for a single run was approximately 3–6 min on
VAX 7000/610 computer, depending on the sample thi
ness. The program was also run on a Intel Pentium 120-M
based personal computer~PC!, and on an Intel 486 DX2
66-MHz based PC. In the former case the computing ti
was almost the same as required by the VAX, while in
latter it was greater by a factor of 3.

In Fig. 6 both the experimental and the corrected scat
ing data of sample B are plotted. As can be noted, the ef
of multiple scattering is to smear the intensity distributio
by removing scattered light from the peak in favor of t
low-intensity tails at lower and higher wave vectors. Th
can be intuitively understood by the following balance arg
ment. For simplicity, let me consider only double scatter
within the scattering plane, corresponding to an azimut
scattering anglew5p/2. The probability that a photon—
which was first scattered in the direction of the peak
undergoes a second scattering, finally exiting the sam
with a different polar angleū, is the same as the probabilit
that a photon first scattered atū is rescattered so that it exit
in the direction of the peak,upeak. For both photons, in fact
the second scattering angle is the same, namely,upeak2 ū. As
a consequence, the number of photons following the form
scattering sequence is greater than that of the photons un
going the latter, since the amount of photons first scattere
the peak direction is maximum. Similar arguments may a
be applied out of the scattering plane and to multiple scat
ing of higher orders, so that the multiply scattered light d
placed from the peak to the tails of the intensity distributi
is not balanced from the opposite contribution. The net re
of multiple scattering is therefore to flattenI (q). It should be
noted that the correction may be as large as a factor of 10
observed at the lowerq values in Fig. 6. High correction
factors were also observed by Bailey and Cannell in
analysis of scattering data taken during the spinodal dec
position of a binary mixture at the critical concentration@6#.
Qualitatively similar results were obtained when correct
the experimental data of sampleA, the difference between
experimental and corrected data being much less pronou
due to the reduced importance of multiple scattering in
thinner sample.
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An effect which is usually associated with Rayleigh sc
tering is the depolarization of the multiply scattered ligh
During the simulation, the photon polarization is tracked a
therefore the depolarization ratioIVH /IVV can be calculated
~IVH and IVV are the intensity of the horizontally and vert
cally polarized components of the light scattered in the sc
tering plane, respectively!. For sample B, the calculated de
polarization is negligible,IVH /IVV being less than 231025

at all detected scattering angles, in spite of the large amo
of multiple scattering. Such a low value is due to the ve
peculiar shape of the differential scattering cross sect
which is sharply peaked in the forward direction, as d
cussed above. As a consequence, it is very unlikely tha
photon is scattered out of the scattering plane by an an
greater than a few degrees. This applies to multiply scatte
photons as well, the calculated average number of scatte
events being of the order of 2–3. Since a significant cha
in the polarization direction occurs only at fairly large sca
tering angles and for photon propagation directions well
of the scattering plane, it follows that no appreciable de
larization is expected in the present case.

Figure 7 shows the corrected data for both samples.
shape of the two curves in a log-log plot is fairly simila
thus indicating that multiple-scattering distortions were s
cessfully corrected~compare with Fig. 5!. In order to assess
more quantitatively the effectiveness of the method, in Fig
I plot the ratio IB /IA for both experimental and correcte
data. As discussed above, if multiple scattering were
presentIB /IA would be constant. More precisely, it is easy
show that for all wave vectors the ratio of the scattered
tensities would be equal to the ratio of the samples atten
tion 12T @15#: IB /IA5(12TB)/(12TA)52.7. As can be
seen,IB /IA for the experimental data is not constant, and
behavior of the intensities ratio reflects the fact that multi
scattering displaces scattered power from the peak to lo
and higher wave vectors. In contrast, the corrected data a
good agreement with the predicted valueIB /IA52.7, indi-
cated by the straight line in Fig. 8. Small deviations a
observed only in the small-q regime, where multiple-

FIG. 6. Scattered intensity vsq for sample B~sample thickness
700 mm, transmission 0.15!. Open circles are experimental dat
filled circles are the same data after correction for multiple scat
ing.
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scattering effects seem to have been slightly overestimate
the correction process.

V. SUMMARY

An implementation of a Monte Carlo simulation of Ra
leigh light multiple scattering to all orders has been d
scribed. The simulation is based on the propagation o
large number of photons through the sample. The most
teresting feature is a technique to separate the t
dimensional problem of generating the polar and azimu
scattering angles into two independent one-dimensional P
samplings. The resulting azimuthal angle PDF is indep
dent of the scattering system, and its sampling is qu
straightforward. Information on the particular differenti
scattering cross section is embedded in the polar angle P
Accordingly, theu sampling algorithm has been designed
that different scattering systems can be considered.

This scheme may also be applied tog- and x-ray scatter-
ing, and is well suited for various scattering geometries.
particular, it allows us to overcome some difficulties pos
by low-angle scattering experiment simulations, where
very high angular sampling resolution is needed to av
quantization distortions. An artifice has been proposed to
hance the speed of the polar angle sampling, which typic
is limited by the sharply peaked shape of the polar PDF.
a final remark, the simulation does not need a large comp
memory, so that it may be successfully run even on a sm
PC.

FIG. 7. Scattered intensity distribution for samples A~filled tri-
angles! and B ~filled circles!, after the correction procedure. No
that the curves have fairly the same shape on a log-log plot,
indicating that multiple-scattering effects have been success
corrected.
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The application of the simulation code to the correction
scattering data from microporous membrane filters in qu
index-matching conditions has also been presented. T
samples of the same kind, but with different thickness
were considered. In this case both the singly scattered in
sity distribution and its functional form were not knowna
priori , thus making the test of the correction procedure
particularly severe one. The data corrections turned out to
self-consistent in that the iteration process previously
scribed converged. Moreover, it yielded the same result
samples of different thickness, and corrected data were c
sistent with the transmitted beam attenuation measureme
thus demonstrating the method effectiveness. The inten
distribution corrections were as high as a factor of 10, a
was the case for the low-angle data of the thick sample.
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FIG. 8. Ratio of the intensity scattered by the two sampl
calculated from the experimental data~open squares! and after
multiple-scattering correction~filled squares!. The corrected data
are in good agreement with the sample attenuation ratio
2TB)/(12TA)52.7, represented by the solid line, as one sho
expect if multiple-scattering effects were actually corrected for.
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