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Monte Carlo multiple-scattering simulation and data correction
in small-angle static light scattering

Luca Cipellettf
Dipartimento di Fisica and Istituto Nazionale per la Fisica della Materia, UniversitaMilano, Via Celoria 16, 20133 Milano, Italy
(Received 6 December 1996

Monte Carlo methods usually employed fgrand x-ray problems have recently been utilized for simulating
multiple Rayleigh light scattering to all orders. Here a technique is discussed to separate the two-dimensional
problem of generating the polar and azimuthal scattering angles into two independent one-dimensional sam-
plings, thus increasing the computational efficiency. Although the method has quite a general applicability, this
paper is focused on small-angle light-scattering simulations, and an artifice is introduced which reduces the
inherent poor efficiency of the polar angle sampling in conjunction with differential scattering cross sections
that are sharply peaked in the forward direction. As a test, the technique was used to correct two sets of
experimental data affected by multiple scattering. Microporous membrane filters under quasi-index-matching
conditions were investigated, and two stacks of different thickness were used. While the raw data are of course
appreciably different for different sample thicknesses, the corrected scattered intensity distributions are the
same, thus providing evidence of the method effectiveness in retrieving the single-scattered intensity distribu-
tions.[S1063-651X97)09806-1

PACS numbegps): 02.70.Lq, 42.25.Fx, 61.43.Gt, 61.43.Hv

I. INTRODUCTION ability density function(PDP). It is required that the sam-
pling algorithm should be fast, to make the simulation time
Multiple scattering is a quite general physical process thateasonable, and also flexible, so that various differential scat-
inevitably occurs when a wave propagates in a strongly scatering cross sections may be simulated. Bailey and Cannell
tering medium, and it severely distorts the singly scattered6] proposed a quite general method, which consists of the
intensity angular distribution. Since single-scattering pro-Pinning of the whole solid angle in a way such that the
cesses are the only ones which can be easily interpreted,%attering probability per bin is the same. At each scattering

data correction procedure is highly desirable to exploit light® N€W propagation direction is chosen at random among all
scattering fully. the bins. Although their method proved to be highly efficient

Data correction is usually based on a Monte Carlo simu-i” various scattering geometries, it is unfortunately difficult

lation of the propagation of a large number of photons in the® apply in the case of very low-angle scattering experiment

sample. Th approach has been used since the 1970s JISIONS, ot V0 anycuantzaton dtotope s
study the effect of multiple Compton and Rayleigh x- and y yp

tterind 1-5. M tv. Bail qcC I the intensity angular distribution scale of variation, which is
y-ray scatteringi1-5]. More recently, Bailey an anne usually very small for low-angle experiments. Since even for

applied a similar technique to calculate multiple scattering ir\ow-angle simulations the binning of the entire solid angle is
static light-scattering experiment§], overcoming simula-  peeded, it follows that an exceedingly large number of bins
tion difficulties due to the imaging geometry that is often\yoy|d be required to achieve the desired angular resolution.
used in light scattering setups. Recently, there has been a growing interest in the extremely
Data correction for the multiple scattering is usually ac-jow-angle scattering machines, which can cover now angles
complished by iteratively running the simulation programas low as 0.01{7]. Such machines are designed to investi-
[1,3,6]. One starts with a reasonable guess of the singly scapate scatterers larger than those studied with conventional
tered intensity to obtain the simulated totsingle plus mul-  setups. Large turbidities are easily encountered, and a data
tiple) scattered intensity. The initial estimate is then refinedcorrection procedure which efficiently tackles the difficulties
by comparing the result of the simulation with the experi-posed by low-angle scattering simulations is therefore
mental data, and a corrected version is used as an input forreeeded.
second run. The entire process is repeated until the simulated The main purpose of this paper is to present a Monte
scattered intensity converges to the experimental data. It is tGarlo simulation procedure based on the separation of the
be noticed that aa priori knowledge of the functional form two-dimensional angular sampling into two one-dimensional
of the single-scattering distribution is of great help in thePDF samplings. Since a one-dimensional sampling algorithm
correction procedure, even if it is not strictly necessary.  is much faster than a two-dimensional one, this method re-
The most difficult task in a Monte Carlo simulation is the sults in a fast simulation of photon propagation for any iso-
two-dimensional problem of generating the polar and azitropic scattering system, where the scattering depends only
muthal scattering angles according to the appropriate proten the magnitude of the scattering wave vector. Moreover,
the technique may be also appliedjoand x-ray scattering
and to any scattering geometry, and it is particularly well
*Electronic address: cipelletti@mi.infn.it suited for small-angle light-scattering experiment simula-
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tions. For these cases, the polar angle sampling algorithm
efficiency is usually limited by the sharply peaked shape of
the polar PDF. A simple artifice will be described, which
allows a much more efficient sampling, increasing the simu-
lation speed by a factor as large as 5.

An application to the correction of scattering data from y
microporous membrane filters permeated by a quasi-index-
matching solvent will also be presented. It is to be pointed FG, 1. The laboratory framex(y,z) and the photon frame
out that, for this system, the single-scattered intensity distri(xph,yph,zph), after scattering has occurred at point A.
bution functional form is not knowm priori, thus making
the correction procedure test a particularly severe one. NQhe sansor is a substantial fraction of the one in which most
only does the data correction turn out to be self—con5|sten6
since the process converges, but it also yields the same resglltf
for samples of different thickness—and therefore differenﬁ
amount of multiple scattering—thus providing a good test o
the effectiveness of the method.

The paper is organized as follows: Sec. Il briefly de-

icient scattered light detection. The scattering experiment
tself may be simulated in a very effective way. In fact, it is

very unlikely that a photon, which has been propagated
through the sample, exits the cell along a direction such that

i tpical I le liaht tteri . ¢ it is not collected by the simulated sensor. Therefore, only a
SC;' esTﬁ {;"C"’; sCmal -ang el ;9 -Sca erlngt 3xperslmen”e|1 egligible number of photons are to be rejected after time-
setup. The Monte Carlo simulation is presented in Sec. llly,nqiming propagation through the cell.

particular emphasis being given to the angular sampling
technique. Finally, Sec. IV is devoted to an application of the
multiple-scattering correction procedure to scattering data IIl. MONTE CARLO SIMULATION
from two samples(microporous membrane filterof the
same kind but with different thickness. A. General scheme

We assume that the incident beam propagates along the
z axis of the laboratory frame, and is linearly polarized in the
x-axis direction(vertical direction. As will be seen in the

In this section a typical small-angle static light-scatteringfollowing, it is also convenient to introduce a photon frame
apparatus will be briefly described, and I will focus on those(XpnYpn:Zpn), Where thez,, axis corresponds to the photon
details that are more important in view of the Monte Carlopropagation direction and the,, axis is parallel to the pho-
simulation. As a characteristic example of the optical arton polarization(see Fig. 1 For unscattered photons, the
rangement, | will refer to the experimental setup described,n andz axes coincide, while the,, andy, axes are par-
by Carpinetiet al. [8], which was also used to take the scat-allel to thex andy axes, respectively. The beam is assumed
tering data presented in Sec. IV. to have a Gaussian profile with a beam radiysso that the

In the Carpinetiet al. setup, a collimated laser beam falls radial intensity distribution at the entrance cell walll ()
onto a cell, and the transmitted beam, together with the scat=1 0eXpP(=2r2wA).
tered light, is collected by a leris. The sensor is placed in The general scheme of the Monte Carlo simulation is
the focal plane of., and it consists of 31 solid state elementssimilar to that described in Reffl,6]. The path of a large
shaped as a quarter of annulus. On center a tiny hole allowsumber of photons is tracked through the cell by repeating,
the transmitted beam to pass clear of the sensing elemerfigr each photon, the following steps:
and to be detected by a photodiode placed behind the sensor. (1) Photon position at the cell entranc&he polar coor-
In this way, the sample transmissiGnmay be measured by dinates (,¢) in the entrancex—y plane are calculated.
dividing the transmitted beam power in the presence of th&ince the incoming beam profile is Gaussian, the probability
sample by that with the cell filled with the solvent alone. It is that the radial coordinate at the cell entrance lies between
to be pointed out that multiple scattering does not affect theand r +dr and the angular coordinate lies betwegrand
measured value, since the transmission is determined frome¢+d¢ is proportional to expf 2rw?)rdr d¢. Accordingly,
the unscatteredtransmittedd beam powef9]. The sample first ¢ is chosen at random i®,27), thenr is computed by
turbidity 7 may be calculated fromr=—z_jInT, where sampling the PDF (#/w?)exp(—2r’w?). This can be easily
Zeqn is the cell optical path. Note that=7"1 is the photon done by means of the inverse transform methad], by
mean free path. choosingr = (w/+/2)y/~In(1—&) [here and in the following

With this optical scheme, scattered photons are collectethdicates a random number uniformly distributed(th1)].
by sensor elements at different radii according to the polaFinally, polar coordinates are transformed into Cartesian co-
exit angled (scattering angle The apparatus thus allows the ordinates. Ifr is so large that the calculated photon position
collection of scattered light at 31 angles, ranging from 0.1%ies out of the entrance cell wall, bothand ¢ are rejected
to 13.5°, and corresponding to almost a two-decade range iand the sampling is repeated. Note that stép may be
wave vectorq=4mn.\ " !sin(@/2), whereng is the sample skipped if the beam lateral extension can be neglected, i.e., if
refractive index anc\ the vacuum wavelength. It is to be the difference between the width of the scattering cell and
noted that the setup collects all the photons scattered frow is much larger than the photon mean free path.
the sample, and therefore it has no rejection scheme against (2) First scattering eventin order to save computing
multiple scattering. On the other hand, the advantage of suctime, only scattered photons are tracked through the cell; this
an optical scheme is that the overall solid angle subtended big obtained by forcing the first scattering event to happen

Il. SMALL-ANGLE EXPERIMENTAL SETUP
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within the cell. The patluy,; before the first scattering event A Xon
is therefore calculated by sampling the exponential PDF
7 lexp(—72) only for 0<z<z.,. This is obtained by
choosingdgs= — 7 Hn[1—&1-T)]. A

(3) Scattering directionThe probabilityd P(6,¢), that a AN s¢
photon is scattered within the solid angl€ in the direction \\('}
defined by the polar anglé, the scattering angle, and the : \
azimuthal anglep (with respect to the photon frame; see Fig.

2) is dP(6,¢)x(do/dQ)dQ, whereda/d() is the single-

scattering differential cross section. Accordingly, the scatter-

ing direction is calculated by sampling the bivariate angular Yo

PDF (dP/d6 de)(6,¢). Finally, the scattering direction is
transformed back to the laboratory frame. Details on the an-
gular sampling procedure will be given in Sec. Il B.

(4) Distance before the next scattering evertie photon
is propagated along the direction calculated at phuntil
it is scattered once more. The distamté&aveled before the
next scattering event is sampled from the exponential PDEketch of thed, ¢, and¢ angles. It is to be emphasized that
7 lexp(—72), so thatd=—7"lIn(1—¢). The distanced,, 2 is a function of the two random variablgsand ¢, which
from the last scattering event to the cell wall along the propaare not separable, due to the dipole factorinn fact,
gation direction calculated at poif8) is also computed. sirfy=1—cogy=1—sirfd coSe and S cannot be factored

Points(3) and(4) are repeated until photon exits from the in a -dependent term times@dependent term, as would be
cell, i.e., until the distance to the next scattering as calculatetequired for # and ¢ to be random independent variables
at point(4) would be greater than the distance to the cell wall[10]. In order to design a fast and flexible algorithm for
(d>dggep)- samplingZ, it is, however, desirable to sample the angular

(5) Photon countingln the optical geometry of a typical variablesd and ¢ separately. The task is then split into the
small-angle light-scatteringSALS) instrument, each detec- easier and faster independent sampling of a PDRpfethe
tor element corresponds to a different photon exit angulasame for every scattering system—and of a PDFfavhich
range. When a photon exits from the cell, an index variablecontains information on the specific scattering system
associated with the proper sensor element is updated, in othroughl(q). To do that, one takes advantage of the trigo-
der to accumulate the number of photons detected by each abmetric identities sify=1—coSy=1—sirPd coSe=sirfe

~ Y

ph

FIG. 2. Relevant angles in the scattering, with respect to the
photon frame:# is the (polar scattering anglegp the azimuthal
scattering angle, ang is the angle between incoming photon po-
larization and scattered photon propagation direckign

the 31 channels. +cogp cogh to rewrite the angular PDF in the form
The number of launched photons must be large enough to
achieve a good statistics for all detector channels. At the end 2(0,0)=p191(0,0)+ B29:(0,¢), 1)

of the run, the number of recorded counts is normalized in h
order to obtain the simulated total scattered intenkity;) where

(i=1,2,...,31). Foreach channel, the normalization factor ™

accounts for the solid angle subtended by the related detector B1= J deo N1(q(6))sing, (29
element and for the fact that photons are detected even out of 0

the scattering planghe (y,z) plane in the laboratory franje N sirZe

It is to be pointed out that(q;) depends on the total number 91(8,¢)= = 1(q(8))sing —, (2b)
of tracked photons. In order to compdr€q;) with the ex- B1 77

perimentally measured scattered intensity,(q;), the simu- -

lation data are therefore multiplied by a factdr chosen in ﬁzzf dé NI(q(6))sing cogs, (3a)
such a way that the total simulated and measured scattered 0

power are then2 same. Thisnzis done by taking N o

=[] dQlexp(@sinyl/[] dQI(a)siny], where le(q) and = i i

l:(q) are fi‘is of the measured and simulated F:jata, respec- 92(6.¢) B2 | (@(9))sing cos' T (30

tively, and ¢ is the angle between the incident polarizationA both d . “1th
vector and the scattered propagation vedisee Fig. 2 s bothg, andg, are positive, ang; + 8,=1, the compo-

Track is also kept of the number of scattering events Whicﬁitign method[lo].may be aPP”ed to sampEg. Accordingily,
each photon undergoes, so that the contribution of singleJ1 1S sampled with probabilitys; andg, with probability

double-, and higher-order scattering to the overall scattered2; that is, one generateand sampleg, if £<p;, and
intensity may be monitored. 0, otherwise. Moreover, bot); andg, are the products of a

#-dependent factor and gdependent factor. Therefore, the

two angular variables are independent random varigh@s

and the most convenient sampling method may be separately
The angular PDF to be sampled idR/d6# do)(6,¢) applied to each of them.

=N/l (q(6))sinbsiry=3(6,¢), wherel is the singly scat- Let me first consider the rather straightforward sampling

tered light intensity distribution antll/7 is a normalizing of the ¢-dependent terms in Eg&b) and(3b), focusing my

factor, so thatf%”dq;fgda 3(6,9)=1 (see Fig. 2 for a attention only on the sfie//=®(¢) factor in Eq.(2b), since

B. Angular sampling
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FIG. 3. A typical ®(6) for small-angle light scatterin¢see text

for more details Note the sharp peak in the very low-angle region, erence table building, and it generates a continuous distribu-
zoomed in the inset. The dashed I|n_e is the upper limiting functiontjgpy of scattering angles, thus avoiding any quantization ef-
y=Omay used in the acceptance-rejection algorithm for the samygcs However, the generation 6t each scattering event is
pling. slower than in the previous case. | implemented both algo-
_ ) rithms and, for a typical simulation run where®1photons

the sampling of the analogoysdependent factor in E43b)  are launched, the overall computing time is quite similar.
may be simply obtained from the sampling®f¢). In fact,  since the acceptance-rejection method is more easy to pro-
one notices that ifp is a random angle it0,2m) with PDF  gram, | will describe it, referring for simplicity only tg; : a
®(¢), then ¢'=[(¢+m2)mod2r] is a random angle in  similar procedure is needed for sampligg.
(0,2m) with PDF code/m (a modb indicates the remainder | et ®(6)=N,I(q(6))sind be the ¢-dependent factor of
of the dl_v|S|ona/b). Since®(¢) is periodic with period, to 91(6,¢), normalized so thaf7de ©(6)=1, and let® .
sample it one generatgsfrom ®(¢) for O<e<mand addsT  pa the maximum oB(6) in (0,m). The acceptance-rejection
to the result, with probability. This can be done quite effi- algorithm is implemented  with y(6)=const@
ciently by means of a combination of the inverse transformpc g< - a5 an upper limiting function fo(g). At g:éh
and acceptance-rejection methdds]. Using sirp/m as an  geattering event the scattering angle is therefore chosen at
upper I|m|t|'ng function ford(¢), one first takesp=arcco$l  andom in(0,m), by taking#=¢m. Finally, 8 is accepted with
—2¢) (the inverse transform methpdand then accept®  pronability ©(6)/0 ... As is known, the efficiency of the
with probability sirfe/sing (acceptance-rejection method algorithm—i.e., the probabilitP , of §to be accepted once it

| tumn now to a discussion of the sampling of the a5 pheen generated—is given by the ratio of the area under

#-dependent factors in Eq&2b) and (3b), which depend on @(6) to the area undey(6) (see Fig. &
the particular scattering system through the single-scattering

intensityl (q). Accordingly, the sampling algorithm must be m

flexibly designed, since different functional forms may be Jo do 0(0)

used. Either the numerical inverse transform metkdg or Po= = ) (4)
the acceptance-rejection method are suitable. The former fﬂde y(6) 70 max

consists in numerically dividing0,7) into a large number of 0

tiny intervals, such that the probability of the scattering angle

to lie in each interval is the same. Prior to the simulation runA typical ©(6) for SALS is shown in Fig. 3 together with the

a reference table is built up, containing the center of all in-corresponding/(6): the presence of a very sharp peak near
tervals, and it is stored in the computer memory. At each?=0 (see the insg¢tis due to the sifl factor combined with
scattering eventg is chosen at random among the ang|esthe fact that most of the light is scattered at very low angles
listed in the reference table. This scheme has the advanta§d2].

of allowing a fast sampling of thé PDF, once the reference It is clear that a very lowR, value corresponds to such a
table has been built. However, it suffers from the fact thatshape, thus making the acception-rejection algorithm a rather
building and storing the reference table is time and memonglow one. Consequently, one would desire to generate the
consuming, especially for very low-angle light-scatteringscattering angle by sampling a much less peaked PDF. This
simulations, where a large number of tiny intervals are recan be accomplished by the following artifice: instead of
quired. In fact, to avoid distortions due to the quantization ofdirectly sampling®(6), one choose®=u", whereu is a

the scattering angles, the average interval width has to beandom variable with(properly normalizef PDF U™ (u)
much smaller than both the typical scale of variation of=n®(u"u""*, 0<u<Wx [13], and U™ is sampled by
I(g) and the sensor element angular spacing. In contrast, threeans of the acceptance-rejection method as described
acceptance-rejection algorithm does not need any prior rebove. Fig. 4 shows (W(u) for variousn for the samed(6)
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as in Fig. 3. The correspondent upper limiting functions are 1000 -
also shown. Note that all curves are much less peaked, and ]
that the areas under the upper limiting functions are defi- » >
nitely smaller than in the previous case, thus resulting in a ] : .;
100 - pay
- T, =068
104 f A
if the numerical inverse transform technique is chosen to
sample®(0), since it drastically reduces the time required to
build up the angular reference table. 1

greater computational efficiency, as defined analogously to
Eq. (4). For the case shown in Figs. 3 and 4, the acceptance
is maximized forn=4, P, being 0.14, a much larger value
compared withP,=0.02, which holds for the direct sam-
pling of ®(#). By using this artifice, the overall simulation
time is typically reduced by a factor as large as 5. Finally, it
is to be pointed out that this method proves to be useful also

I(q) (arb. units)

100 1000 10000 100000
C. Experimental data correction procedure q (em™)

The Monte Carlo simulation described in the previous FIG. 5. Experimental scattered intensity distribution for two
sections may be applied to the correction of experimentasamples of the same materigcetate of cellulose microporous
scattering data, as | will now explain. An iterative scheme jsmembrane filtersbut with different thickness. Open triangles refer
used[1,3,6] to improve an initial gues$®) of ls, theun- 1 sample A, open circles to sample B, five times thicker than

™~ S ’ . .
known single-scattering distribution. A function obtained by S2mPple A. Curves are labeled by the sample transmission value.

fitting 1§ is input to the Monte Carlo code to obtain the ;.. yqring distributionsare proportional within the experi-
first-order simulated total scattered intendif}’, where the |\ 1ontal errors, thus providing evidence of the effectiveness of
superscript refers to the number of iteratiohg? iS cOM-  the correction process.

pared with the experimental scattered inten*s{?ﬁ&Pt to calcu- The samples are microporous membrane fil{S&artorius
late a more refined guess of the single-scattered intensitysM 123 03 made of acetate of cellulose and permeated by a
which in turn may be fitted and used as the input to thequasi-index-matching solvenp-cymene[14]. These mem-
second iteration, and so forth. Afteriterations, the correc- branes are highly porous, the pore boundary having fractal

tion of the single scattering guess is done by taking morphology, and their spatial structure exhibits a quasiperi-
| Xt odicity over a typical length of approximately n. Due to
|M=1{"1 T (5)  these features, their scattered intensity distribution is peaked
t at a very low wave vector, and it steeply decays at larger

The iterative procedure is carried on until the simulated totafollowing a power law. The “thin” sample, which will be
scattered intensity agrees with the experimental scattered ifabeled as sample A, is a single membrane, while sample B,
tensity within a fixed error, typically a few percent. Note the “thick” one, is made up by a stack of five membranes.
from Eq. (5) that, as the simulated scattered intensity ap-All the membranes were measured to have equal thickness
proaches the experimental data, the single-scattering gue§s40+5 um) and the scattered intensity distribution of each
calculated at successive runs changes only slightly, eventwf them was checked to be the same within the experimental
ally converging to the single-scattering intendity errors.

An important point in applying the data correction scheme Figure 5 shows the experimental scattered intensity distri-
to small-angle scattering experiments is that the data are usbutionsl , andlg for samples A and B. The measured trans-
ally available only in a limited angular range, while the mission for the two samples aiflg,=0.68, corresponding to
simulation requires a guess of the single scattering over tha photon mean free path=363+13 um, and Tg=0.15,
whole range of wave vectors. In practice, however, data coreorresponding td= 369+ 13 um. It should be noted that the
rection turns out to be feasible, provided that most of thd values calculated for the two samples from the transmission
Scattered Iightfx‘“falls within the angular range spanned by and thickness data are in good agreement. The photon mean
the sensor, and that one can extrapolate in a sensible way tfree path is definitely larger than the thickness of sample A

high-q behavior from the available data. (140 um), and approximately half the thickness of sample B
(700 um). Accordingly, one expects multiple-scattering con-
IV. APPLICATION tributions to be much more relevant for sample B than for

sample A. The presence of multiple scattering to an extent

The multiple-scattering data correction procedure hasvhich is different for the two samples is confirmed by the
been tested by applying it to the scattered intensity distribufact that the shape dfy andlg in a log-log plot is not the
tions from two samples of the same kind, but with differentsame(see Fig. 5.
thicknesses. If multiple scattering were not present, one The experimental data of both samples were corrected for
would expect the scattered intensity distributions of the twomultiple scattering, as explained in Sec. Illl. The single-
samples to be simply proportional. Of course, multiple scatscattering cross-section functional form being unknown, the
tering will cause the intensity distributions to be different. data were fitted with a quite general function, namely, the
By contrast, as it will be shown in the following, the cor- ratio of two polynomials, the numerator and denominator
rected intensity distribution§.e., the reconstructed single- degree being 3 and 7, respectively. This functional form
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proved to fit accurately both the experimental scattering data e
and the estimated single scattering profile calculated at the 10004 4
end of each iteration. The extrapolation of the fitting function ] ]
out of the experimentally accessiblg range provides a
physically reasonable behavior of the scattered intensity, by
following the same steep power-law decay observed in the
fitting range for the larger wave vectors. The choice of a
physically reasonable scattering profile was also eased by the
fact that the membrane filters scatter substantially only
within a narrow lobe in the forward direction. In fact, by
integrating the experimental data fitting function, one can
estimate that more than 90% of the light scattered by the
sample actually falls in thg range covered by the instru- e
ment sensor. 100 10b0 10600 100000

Typically 2—4 iterations were necessary for the correction q cm™
process to converge. In each computer ruff $6attered
photons were tracked through the sample, the resulting sta- FIG. 6. Scattered intensity \¢g for sample B(sample thickness
tistical fluctuation for each detector sensing element being00 um, transmission 0.15 Open circles are experimental data,
less than the correspondent experimental error. The compuf!”ed circles are the same data after correction for multiple scatter-
ing time for a single run was approximately 3—6 min on a'"9-
VAX 7000/610 computer, depending on the sample thick-
ness. The program was also run on a Intel Pentium 120-MHz An effect which is usually associated with Rayleigh scat-
based personal computéPC), and on an Intel 486 DX2 tering is the depolarization of the multiply scattered light.
66-MHz based PC. In the former case the computing timeéDuring the simulation, the photon polarization is tracked and
was almost the same as required by the VAX, while in thetherefore the depolarization ratlg, /1, can be calculated
latter it was greater by a factor of 3. (Iyy andly,y, are the intensity of the horizontally and verti-
~In Fig. 6 both the experimental and the corrected scattergq)ly polarized components of the light scattered in the scat-
ing data of sample B are plotted. As can be noted, the effegging plane, respectivelyFor sample B, the calculated de-
of muItlplg scattering is to smear the intensity d'smbu“on'polarization is negligible|yy/1\y being less than £ 1075
by removing scattered light from the peak in favor of the 54 5 getected scattering angles, in spite of the large amount

Iow-ltr:te_nsny_ tallls atdlower (?T)d hh'grfh wave t\)/elctors. ThiS ot multiple scattering. Such a low value is due to the very
can be intuitively understood by the following balance argu-hqcliar shape of the differential scattering cross section,

ment. For simplici.ty, let me consider onI.y double scqttering hich is sharply peaked in the forward direction, as dis-
within Fhe scattering plane, correspgndmg to an azimuthassed above. As a consequence, it is very unlikely that a
scattering anglep=m/2. The probability that a photon— 101 is scattered out of the scattering plane by an angle
which was first scattered in the direction of the peak—g eater than a few degrees. This applies to multiply scattered
undergoes a second scattering, finally exiting the samplgpqons as well, the calculated average number of scattering
with a different polar angl@, is the same as the probability eyents being of the order of 2—3. Since a significant change
that a photon first scattered atis rescattered so that it exits in the polarization direction occurs only at fairly large scat-
in the direction of the peakd,.. For both photons, in fact, tering angles and for photon propagation directions well out
the second scattering angle is the same, nandgly,— 6. As  of the scattering plane, it follows that no appreciable depo-
a conseqguence, the number of photons following the formelarization is expected in the present case.

scattering sequence is greater than that of the photons under- Figure 7 shows the corrected data for both samples. The
going the latter, since the amount of photons first scattered ishape of the two curves in a log-log plot is fairly similar,
the peak direction is maximum. Similar arguments may alsdhus indicating that multiple-scattering distortions were suc-
be applied out of the scattering plane and to multiple scattersessfully correctedcompare with Fig. b In order to assess
ing of higher orders, so that the multiply scattered light dis-more quantitatively the effectiveness of the method, in Fig. 8
placed from the peak to the tails of the intensity distributionl plot the ratiolg/I, for both experimental and corrected
is not balanced from the opposite contribution. The net resultlata. As discussed above, if multiple scattering were not
of multiple scattering is therefore to flatté¢q). It should be  present g/l , would be constant. More precisely, it is easy to
noted that the correction may be as large as a factor of 10, ahow that for all wave vectors the ratio of the scattered in-
observed at the loweq values in Fig. 6. High correction tensities would be equal to the ratio of the samples attenua-
factors were also observed by Bailey and Cannell in thdion 1—T [15]: I1g/l,=(1—Tg)/(1—Tp)=2.7. As can be
analysis of scattering data taken during the spinodal deconseen| g/l 5 for the experimental data is not constant, and the
position of a binary mixture at the critical concentrati@j. behavior of the intensities ratio reflects the fact that multiple
Quallitatively similar results were obtained when correctingscattering displaces scattered power from the peak to lower
the experimental data of samphg the difference between and higher wave vectors. In contrast, the corrected data are in
experimental and corrected data being much less pronouncegbod agreement with the predicted valyg ,=2.7, indi-

due to the reduced importance of multiple scattering in thecated by the straight line in Fig. 8. Small deviations are
thinner sample. observed only in the smad]- regime, where multiple-
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FIG. 7. Scat_tered ?ntensity distribution for_sample$fmed tri- FIG. 8. Ratio of the intensity scattered by the two samples,
angles and B (filled C|rc!e$, after the correction procedure. Note calculated from the experimental datepen squarésand after
that the curves have fairly the same shape on a log-log plot, thug, ,ipje-scattering correctiorffilled squares The corrected data
indicating that multiple-scattering effects have been successfully. i, good agreement with the sample attenuation ratio (1
corrected. —Tg)/(1—T,)=2.7, represented by the solid line, as one should

. . . expect if multiple-scattering effects were actually corrected for.
scattering effects seem to have been slightly overestimated in

h rrection pr . o . . :
the correction process The application of the simulation code to the correction of

scattering data from microporous membrane filters in quasi-
index-matching conditions has also been presented. Two

An imp|ementation of a Monte Carlo simulation of Ray- Samples of the same kind, but with different thicknesses
leigh light multiple scattering to all orders has been de-were considered. In this case both the singly scattered inten-
scribed. The simulation is based on the propagation of élty distribution and its functional form were not knoven
large number of photons through the sample. The most inpriori, thus making the test of the correction procedure a
teresting feature is a technique to separate the twoparticularly severe one. The data corrections turned out to be
dimensional problem of generating the polar and azimutha$€lf-consistent in that the iteration process previously de-
scattering angles into two independent one-dimensional PDgCribed converged. Moreover, it yielded the same result for
samplings. The resulting azimuthal angle PDF is indepensamples of different thickness, and corrected data were con-
dent of the scattering system, and its sampling is quit§istent with the transmitted beam attenuation measurements,
straightforward. Information on the particular differential thus demonstrating the method effectiveness. The intensity
scattering cross section is embedded in the polar angle PDHistribution corrections were as high as a factor of 10, as it
Accordingly, thed sampling algorithm has been designed sowas the case for the low-angle data of the thick sample.
that different scattering systems can be considered.

This scheme may also be appliedyoand x-ray scatter-
ing, and is well suited for various scattering geometries. In
particular, it allows us to overcome some difficulties posed The author thanks A. Bailey and D. S. Cannell for pro-
by low-angle scattering experiment simulations, where aiding him with the computer code for multiple scattering
very high angular sampling resolution is needed to avoicsimulation described in Ref6]. He is also indebted to M.
guantization distortions. An artifice has been proposed to eriglio and M. Carpineti for useful discussions and for help
hance the speed of the polar angle sampling, which typicallyn preparing this manuscript. This work was supported by
is limited by the sharply peaked shape of the polar PDF. Agjrants from the Ministero dell'Universitadella Ricerca Sci-

a final remark, the simulation does not need a large computentifica e TecnologicdMURST) and from the Comitato Na-
memory, so that it may be successfully run even on a smafltionale Ricerche Tecnologiche e Innovazione of the Con-
PC. siglio Nazionale delle Ricerch€€NR).

V. SUMMARY
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